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de Janeiro, Brazil 
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Abstract. We study ihe q-state antiferromagnetic Potts model on fractals, namely the 
Sierpinski carpets (1 < D,< 2) and pastry shells ( 2 <  D,< 3). For both families a critical 
value qc was found, above which the system is always in the paramagnetic phase whereas 
for q at or less than qc the system exhibits a low temperature critical phase. The phase 
diagrams are analysed from the geometrical point of view. 

Recently, many investigators have concentrated on the influence of fractal geometries 
on the critical behaviour of ferromagnetic systems (Gefen et al 1984a, b, %era 1985). 
An important new result that emerges from these studies is the relevance of other 
geometrical parameters, apart from the dimensionality, in defining universality classes. 
Since antiferromagnetic systems in Euclidean lattices have local geometrical properties 
influencing the critical behaviour, the study of these systems on fractal geometries is 
in order. In particular, it is interesting to study systems with non-zero ground state 
entropy per site, such as the antiferromagnetic Potts model, and investigate the existence 
of a critical value qc above which there is only the paramagnetic phase. Also, as 
suggested for hypercubic lattices (Berker and Kadanoff 1980), one hopes that, for 
q S qc, the low temperature phase may be characterised by an algebraic decay of 
correlations; thus for any 7-s T,, the correlation length is infinite. 

In this paper, we use an approximate renormalisation group (RG) approach for the 
antiferromagnetic (AF) Potts model on two types of self-similar fractals, namely the 
Sierpinski carpet and the Sierpinski pastry shell (Mandelbrot 1977), following a 
previous study of the ferromagnetic case on these lattices (Riera and Chaves 1986). In 
what follows, we briefly discuss the fractal geometries considered in this work and the 
general form of the RG equations. Results for the carpet and pastry families are then 
discussed with special attention to the phase diagrams obtained. 

Figure 1 shows examples of self-similar fractal lattices called the Sierpinski carpet 
and Sierpinski pastry shell. The first (second) family is constructed by an iterated 
subdivision of a unit square (cube) into b2 (b3) small ones and the simultaneous cutout 
of l 2  ( 1 3 )  small ones. The fractal dimension (Mandelbrot 1977) is defined as 

( l a )  Dr= In( b2 - 12)/ln b 

or 

Df= ln(b3 - Z3)/ln b. 

The small squares (cubes) can be removed in two ways leading to geometries with 
different lacunarity L (Gefen et al 1984a) (different degree of homogeneity, see figure 
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Figure 1. Sierpinski carpet ( a )  and Sierpinski pastry shell (b)  with b = 3, I = 1 after two 
steps in the lattice construction. The lattice sites in ( a )  are denoted by 0; the location of 
sites in (b)  follows a similar pattern. 

2). In the large lacunarity case, the holes are condensed at the centre of each square 
(cube) on each step of lattice construction; in the low lacunarity case, they are uniformly 
distributed throughout each square (cube). 

Once the iterated procedure of lattice construction reaches a microscopic scale, we 
attach to each site i a spin ai which can be in any of 9 different Potts states. The Potts 
Hamiltonian (in units of 1 / p  = k g T )  is 

-P%= c J(9&,-1)+ c Js(9&,,u,,-1) ( 2 )  
< 1, i) ( i ’J’)  

where (0) and (i’j’) stand for first-neighbour pairs in the bulk or on inner surfaces 
bordering the holes, respectively. 

The RG transformations are obtained using an approximate bond moving Migdal- 
Kadanoff scheme (Kadanoff 1976). It consists of moving all the bonds generated after 
n steps of lattice construction to the perimeter (or edge) of the squares (cubes) generated 
on the previous step (see figure 3). After decimating the remaining sites, the perimeter 

Figure 2. Sierpinski carpet with b = 7, I = 3 after two steps of lattice construction: ( a )  large 
lacunarity, ( b )  low lacunarity. 
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Figure 3. Illustration of a bond moving transformation on the Sierpinski pastry shell with 
b = 3, I = 1; ( a )  directions of bond moving applied to some vertical bonds; ( b )  renormalised 
interactions. 

(edge) bonds are defined as J :  or J’ ,  if they are bordering the holes of the lattice at 
the ( n  - 1) step or not. 

The RG equations are expressed in the transmissivity variables t and t ,  associated 
with antiferromagnetic bonds of strength J and J,, respectively: 

t = (1 -epqJ)[ 1 + (9 - 1) e-qJ]-’ 

t ,  = (1 -e-””.)[ 1 + (9  - 1) e-q’s]-’. 

(3a) 

(3b) 

One has, for the antiferromagnetic case, - l / (q  - 1) G t, t ,  S 0, for temperatures 
OS TSco .  

After the bond moving, the decimation procedure is carried out with the aid of the 
break-collapse method (Tsallis and Levy 1981), leading to the renormalised trans- 
missivity variables (Riera and Chaves 1986) 

(4a) 

t :  = t;-1 t: (4b) 

t? = (to)”’( p ) ” i  (5a) 

t D =  (1 - t ) [ l+ (9 -  1)tI-l. 

t l =  t b - l  I 
1 t 2  

with t ,  ( i  = 1,4) given by 

where t D  stands for the dual variable: 

(56) 

The pair of values ( ni, si) ( i  = 1,4) vary according to the lattices; for the carpet 
family with large lacunarity, we have 

(n,, SI) = (b, 0) (6a) 

( n2, s2) = ( b  - I - 1,2) (6b) 

(n3, s3) = ( (b  - 1)/2,1) (6c) 

(n4, s4)=((b-l-2)/2,2) (6d) 



3398 R Riera 

The RG equations obtained by this method allow us to consider non-integer values 
of q, so that we car assess how qc varies with the geometrical parameters of the problem. 

The phase diagrams in the t - t ,  plane for the Sierpinski carpet family with central 
cutouts ( b  and 1 odd) are shown in figures 4 (for q = 2 )  and 5 (for q Z 2 ) .  The t - t ,  
coordinates for the fixed points of the RG equations (4) in the Ising case ( q  = 2 )  are 

D: (0,O) 0: ( - 1 ,  - 1 )  E: (0, -1) ( l o a )  

B: ( t B ,  t : )  A: ( t ” ,  - 1) c: ( - 1 , O ) .  ( l o b )  

The trivial fixed points D and 0 are the sinks of the paramagnetic phase and the 
antiferromagnetic phase, respectively. The fixed point B governs the thermal transition 
of the bulk except for the t, = -1 line (J, = -CO), which is governed by A. Fixed point 
E is associated with T, = 0 for the one-dimensional surfaces. 

In figure 4 we show three distinct phase diagrams: (a) for b = 1 + 2 ,  1 # 1 ;  ( b )  for 
1+4, 1+6, etc; (c) for b = 3 ,  1 = 1. When the ‘surface’ bonds are set equal to zero 
( t ,  = O), lattices with b = 1 + 2 become finitely ramified (Gefen et a1 1984a), implying 
in T,=O (fixed point C in figures 4(a)  and (c)) .  Also, for J = -CO ( t  = - l ) ,  systems 
with b = 1+4, etc, are always ordered, irrespective of t ,  (figure 4(b)); the same does 
not hold when b = 1 + 2 ,  1 # 1 (figure 4( a)), although the case b = 3 ,  1 = 1 (figure 4( c)) 
can be regarded as marginal. These aspects illustrate the crucial role played by the 
‘surface’ bonds to the onset of bulk order when b = 1+2;  to see this one should note 
that for b fixed, the connectivity is smaller when 1 = b - 2 than when 1 = 6 - 4, b - 6, etc. 

The phase diagrams and fixed points of the antiferromagnetic Ising model are 
symmetrically located in relation to the ones for the ferromagnetic case in the positive 
part of the t - t ,  plane, obtained by the same bond moving scheme (Gefen et a1 1984a). 
The location of fixed points A and B with their respective thermal exponents y ,  are 
shown in table 1. 
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Figure 4. Flow diagram for the AF king model on 
Sierpinski carpets: (a)  b = 1 + 2 ,  I # 1 ;  ( b )  b = 1 + 4 ,  
1+6,etc; (c )  b = 3 ,  1=1. 

For q > 2, the ( t ,  t , )  coordinates of the fixed points of the RG equations (4) are (see 
figures 5 ( a )  and ( b ) )  

D: (0,O) B: ( tB, t r )  0: ( to ,  t P ) .  (11) 
The new non-trivial fixed point 0 is the sink of the entire ordered phase, characteris- 

ing this region by an infinite correlation length; in contrast to the q = 2 case, this phase 
is critical. As q increases from 2, the two fixed points B and 0 merge at a critical 
value qc. For q > qc, the system is always in the paramagnetic phase (figure 5 ( c ) ) .  The 
two regimes obtained when q > 2 can be understood from a ground state RG argument 
(Berker and Kadanoff 1980). If, among the ground state configurations, the probability 
that first-neighbour spins in the rescaled lattice are in the same state is of the same 
order as the probability of them being in different states, the T=O configuration 
characterises a disordered phase. By renormalisation, T = 0 flows to the cc temperature 
fixed point in the parameter space; if, on the other hand, the probability that first- 
neighbour spins in the rescaled lattice are in the same state is much smaller than the 
probability of them being in different states, the renormalisation flow will stop at some 
finite temperature fixed point in the parameter space. In the first case (for q > qc) the 
number of states accessible to each spin in the AF ground state configurations has 
increased sufficiently to destroy any information about the state of a spin located a 
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Figure 5. Typical flow diagram for the AF Potts 
model ( q  f 2)  on Sierpinski carpets. For q < qc: ( a )  
b = 1 + 2 ;  ( b )  b = l + 4 ,  1+6, etc. For q > q c :  ( c )  b =  

i r l  1 + 2 ,  1+4, l + 6 ,  etc. 

‘great’ distance apart. In the second case ( q  S qc) the opposite behaviour occurs: due 
to the geometrical constraints of the lattice, a change in the state of a spin at the origin 
must be followed by a change in the states of spins along a large region of the system 
if the ground state energy is to be kept fixed. Thus, the low temperature phase is 
characterised by an infinite correlation length, in constrast to AF systems with null 
ground state entropy per spin, such as the king model on a square lattice. 

q, are qualitatively different if b = 1 + 2 (figure 5 ( a ) )  
or if b = 1 + 4, 1 + 6 ,  etc (figure 5(  b ) ) ,  although a critical phase is present in both cases. 
Also, as the system is one dimensional when J = 0 ( t  = 0), there is no phase transition 
at the t, axis, even at T = 0, unlike the q = 2 case. When J, = --CO ( f ,  = - l / ( q  - l)) ,  the 
bulk is connected through the strong ‘surface’ bonds which implies a large T,; the 
same occurs in the Ising case, but the critical behaviour at t, = - l / ( q  - 1) near the 
critical line is governed by fixed point B. The differences between phase diagrams 
5 ( a )  and ( b )  are again due to the role of the ‘surface’ bonds in these geometries. In 
finite order of ramification when J, = 0 ( t ,  = 0), for b = 1+2 (figure 5 ( a ) )  implies that 
there is no transition on the t axis, whereas for q = 2 implies that T, = 0. For these 
lattices one also sees that the surface bonds are crucial to the onset of bulk order and 
even when J = -m ( 2  = - l / ( q  - l ) ) ,  the system has T,# 0. The location of fixed points 
B and 0 and the thermal exponent y:  for some values of q are shown in table 1.  

When the carpet family is constructed with the cutouts evenly distributed throughout 
the lattices (low lacunarity), the above picture does not change. There are two possible 
phase diagrams determined also by the roles of surface bonds to the onset of the 

The phase diagrams for 2 < q 
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ordered phase. Thus, for lattices with b = 21 + 1, the AF order cannot propagate along 
‘interior’ paths only and we are led to phase diagrams such as in figure 4( a )  for q = 2 
or as in figure 5(  a )  for q # 2 ( q  < qc) .  Otherwise, for lattices with b = 31 + 2,41+ 3, etc, 
we are led to figure 4( b )  for q = 2 or to figure 5(  b )  for q # 2 ( q  S qc) .  

Table 1 shows the values of qc for several lattices of the carpet family. From this 
table, we see that for b fixed, qc increases as Df increases or for Df fixed, qc increases 
as the lacunarity L decreases. The effect of spreading out the holes is to relax the 
geometrical constraints to the onset of AF order (or to lower the mean coordination 
number of the lattice). This means that the order can flow along more independent 
paths which are achieved by considering the large number of paths bordering the holes. 
This mechanism is analogous to what occurs when the dimensionality of the system 
is increased, which leads to a larger value of qc. 

The fact that fractals with the same Df but with different L yield different qc suggests 
that AF systems exhibiting phase transitions on these two fractals should be on different 
universality classes. 

The qualitative phase diagrams in the t - f ,  plane for the pastry family for any 
b 3 1 + 2 ( b  and 1 odd) are shown in figure 6 for q = 2 and in figure 7 for 2 < q =s qc. 
The fixed points of the RG equations for the Ising case are 

D: (0,O) 0: ( - 1 ,  - 1 )  E: (0, -1 )  (12a) 
B: ( tB, t : )  A: ( t A ,  - 1 )  F: ( t F ,  f r )  G: (0, t y )  (12b) 

where the location of the non-trivial ones are shown in table 2. 
The trivial fixed points D, 0 and E are the sinks of the disordered phase (D),  the 

bulk antiferromagnetic phase ( BAF) and the surface antiferromagnetic phase (SAF) 

respectively. The non-trivial fixed points A and B govern the bulk critical behaviour 
while G governs the critical behaviour at the inner surfaces. The critical exponents 
across the FA, FB and FG critical lines (see figure 6 )  are governed by A, B and G 

t-1 n 

0 

Figure 6. Flow diagram for the AF Ising model on Sierpinski pastry shells. 
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for the AF Potts model ( q  # 2)  on Sierpinski pastry shells. 
text). 

respectively. These lines join at the multicritical point F characterised by the parameter 
a, = JT/ JF. Systems with Js/ J > a,  may exhibit an antiferromagnetic order at the inner 
surfaces without such order in the bulk. The values of a,  and of the thermal exponent 
y, associated with A, G and B are shown in table 2. 

Consider any fixed value of b and q and an increasing value of I in table 2. We 
find that the thermal exponent associated with the fixed point G goes in a direction 
opposite to the others. In fact, the G exponents must depend on parameters associated 
with the inner surfaces and here, while Df decreases, the internal surface fractal 
dimensionality D; increases. Also, from the values of tA and t: as 1 increases, we 
obtain increasing values of critical temperatures on the t ,  = -1 and t = 0 lines respec- 
tively, showing the increasing contribution of the inner surfaces to the full geometry. 

The fixed points of the RG equations for 2 < q S q, are (see figure 7(  a ) )  

D: (0,O) 0: ( t  , t ,  1 E: (0, t : )  (13a) 
0 0  

B: ( t B ,  t : )  A: ( t  , t , )  F: ( tF,  t r )  G: (0, t:). (13b)  A A  

The fixed point D is the sink of the disordered phase (D)  and 0 and E are the sink 
of critical phases in the bulk (BC) and at the inner surfaces ( s c )  respectively. The 
fixed point B governs the critical behaviour in the bulk between the BC-D phases and 
A governs the critical behaviour between the BC-sc phases. The fixed point G governs 
the critical behaviour between SC-D phases at the inner surfaces. The multicritical 
point F, as in the Ising case, characterises the crossover from the sc phase to the BC 

phase when ( J,/ J )  = a,. 
As q increases from two, the fixed points E and G on the t ,  axis merge when q 

reaches a value qz. For q > q: the system does not exhibit any phase transition at the 
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inner surfaces (see figure 7 ( b ) ) .  For q > qc the system is always in the paramagnetic 
phase. 

Table 2 shows the values q: and qc for the pastry family. 
For a fixed b and increasing I, the values of qc decreases (Df decreases), but the 

value of q: increases (0; increases). 
When the lacunarity is lowered, the effect on the values of qc are the same as in 

the carpet family and the analysis follows along the same lines; the value of a, also 
increases indicating that the fragmentation of the inner surfaces inhibits the onset of 
surface order without bulk order (by surface order we mean the simultaneous ordering 
of the surfaces bordering the holes, connected through the bulk). 

To conclude, the behaviour of systems with non-zero ground state entropy per site 
are generally complex and the analysis of the order propagation in these systems leads 
to the possibility of an ordered phase characterised by an algebraic decay of correlations. 
For the q-state AF Potts model, this critical phase should occur for q S qc, where the 
value of qc is determined by the connectivity of the lattice. These arguments are general 
and can also be used in the context of fractal geometries. 

Nevertheless, as the value of qc for Euclidean lattices with dimension d < 3 is small, 
and the techniques used for dimensions d 5 3 are incipient, the existence of such a 
critical phase is, as yet, still under investigation. 

In this paper we generalise the results for the AF Potts model in the Migdal-Kadanoff 
approximation for fractal structures. Under this approximation, the results for the two 
families of fractals studied provide a qualitative description of the critical behaviour 
of the model from a geometric point of view. 

One interesting result is that, besides depending on D,, a fact observed for hyper- 
cubical lattices, qc also depends on lacunarity. This new dependence of qc comes from 
the fact that the fragmentation of vacant regions which occurs when the lacunarity 
decreases provides an increasing number of paths that include ‘surface’ bonds (in other 
words, increases the number of independent paths in the lattice). Thus, for the same 
Df, as L is lowered, qc must rise. This result suggests that AF Potts systems exhibiting 
phase transitions on fractals with the same Df but different L should be in different 
universality classes. This is confirmed by the different values of thermal exponents 
obtained for these types of fractals. Besides, as illustrated in the b = 7 ,  1 = 3 case of 
the pastry family (table 2), as L decreases, the thermal exponents characterising the 
several transitions of the system also decrease. This behaviour is analogous to the 
effect of lowering Df (or 0:) for lattices with the same value of b ;  both results were 
also obtained in the ferromagnetic case (Riera and Chaves 1986). 

Since qc increases as L decreases, one should expect that hypercubic lattices ( L  = 0) 
with non-integer dimension d = Df must have a larger qc than a fractal lattice with the 
same Df. This remark should be of interest in the context of E expansions (Wilson 
and Kogut 1974). Also, from the behaviour of qc with Df and L, our results are in 
accord with the values qc ( d  = 2) = 2.3 and qc (d  = 3) = 3.3 obtained for d-dimensional 
hypercubic lattices by Berker and Kadanoff (1980) using a similar bond moving scheme. 

One should note that the bond moving approximation inhibits the propagation of 
the AF order along independent paths and thus the values of qc obtained, including 
the ones of Berker and Kadanoff (1980), should be considered as a lower bound to 
the exact ones. Since this inhibition increases as b increases, we must only compare 
the results for lattices with the same value of b. Also, the effect of lowering qc due to 
this approximation is stronger for low lacunarity, causing a reduction in the difference 
obtained between the values of qc (and of 4:) in the low and large lacunarity cases. 
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Nevertheless, the different universality classes obtained for these lattices give support 
to the result that qc (4:) should be different for the two cases. 

From the above analysis, and from the results for hypercubical lattices, namely the 
exact T, = 0 for q = 3 on the square lattice (Baxter 1982) and the ordered low tem- 
perature phase for q = 3 and q = 4 on the simple cubic lattice ( MC simulations, Banavar 
et a1 (1980)), we may conclude that the q = 3 AF Potts model must not show any phase 
transition on the Sierpinski carpets while it remains an open question if a critical phase 
indeed occurs for this model on the Sierpinski pastry shell. 
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